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Reduction of increment of Rayleigh-Taylor instability in specially designed
multilayer inertial-confinement-fusion targets

N. A. Inogamov*
Laboratoire de Physique The´orique de l’Ecole Normale Supe´rieure,† 24 rue Lhomond, 75231 Paris Cedex 05, France

~Received 30 December 1996!

The problem of hydrodynamic stability and mixing is very important for inertial-confinement-fusion~ICF!
systems based upon high compression of fuel before ignition. The ablative drive of foils and compression of
shells are unstable. The fundamental isobaricf 2 mode is the most destructive one. It conserves pressures in the
Lagrangian particles. A way to remove this dangerous mode is presented, based on special distributions of
mass among subshells in the multishell target. The obtained solution follows from a consideration of new,
inverse-density polytropes that havenegativevalues of the polytropic indexN, r(r )}(r 2r V)N, wherer V is the
radius of an inner, low-pressure cavity filled with a fuel. Polytropes describe inhomogeneous incompressible
and compressible cases. Density of materialr does not vanish in these distributions, as in the case of usual
polytropes withN.0 considered previously in geophysics and astrophysics. Converselyr rises when we
approach the boundary with vacuum. This property allows us to simulate multilayer distributions ofr that are
typical for ICF targets. In these targets the high-density subshells surround the low pressure or vacuum cavity,
while the outer subshells are made from low-density materials such as plastics, foams, and/or from composite
materials. The proposed distributions are self-similar. Therefore their linear dynamics is scale invariant. New
acousticfundamental modesf P

6 are found and an interesting correspondence between acoustic and gravity
modes is presented.~The f 6 or f G

6 fundamental modes are the well-known gravity modes.!
@S1063-651X~97!06810-4#
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INTRODUCTION

The program of laser inertial-confinement fusion has b
developed over more than 20 years@1–4#. Powerful laser
systems changed significantly during this time. The techn
ogy of target fabrication has also improved. To achieve h
compression, the driving laser impulse~duration, shape! and
the target structure must be mutually adjusted. Modern m
ods of fabrication@5–8# allow the preparation of smoot
high quality targets with theoretically any desirable dens
profile r(r ). ~Targets with several layers were widely us
@5–8#. Technologically there is not a large difference b
tween a deposition of one layer on another and a depos
of many layers.! This is done by coating with films of a wid
variety of different materials and adjusting the thicknesse
these films. We propose the use of this technology to fa
cate optimized profilesr(r ) with reduced increment of the
instability. It is well known @3,4,9,10# that the Rayleigh-
Taylor or interchange instability is the main obstacle
achieving the ignition threshold.

The optimal target is a set of subshells with densitiesr i
and thicknessesdi , 1, i ,I ~see Fig. 1!. Here densityr
decreases and thicknesses increase in some definite way
radius r . The numberI is large (I @1); therefore relative
jumps of density are small 2ur i 112r i u/(r i 111r i)!1.
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These targets are thin and thick at the same time, since, f
the one side, a thickness of the external coatdI and the target
as whole are large and, from the other side, high-den
internal subshells are very thin. This means that an effec
aspect ratioReff /DReff is intermediate between large;100
and small;1 values.

The isobaric Rayleigh-Taylor~RT! mode plays an impor-
tant role in the theory of the instability. This mode satisfi
the incompressibility condition divv50. Therefore pressure
in Lagrangian particles are conserved during motion. T
mode satisfies the isobaric boundary condition, which me
that pressure is constant at a contact~Lagrangian! surface. It
has the maximum increments5Agk among all possible un-
stable modes. The mode is invariant to profiles of stratifi
tion and to equations of state~EOS!, which may be different
in different layers or Lagrangian particles. It is connect
closely with isobaric gravity and trochoidal waves@11# and
cannot not be eliminated by changes to the profile.

s,
s:

FIG. 1. Typical decreasing distributions of densityrsw(r ) in the
multilayer targets.
3352 © 1998 The American Physical Society
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57 3353REDUCTION OF INCREMENT OF RAYLEIGH-TAYLOR . . .
An interesting proposal of profiling in the case of an i
compressible fluid@12# was to smooth out the step, as illu
trated in Figs. 2~a! and 2~b!. In the case of the step an incre
ment s5AAgk, A5(12m)/(11m), m5rD /rU ,
rD5r(2`), rU5r(`) is unbounded. This means that
short wavelengths the instability is very fast (s→` as
k→`). In the smoothed case this unbounded incremen
‘‘cut’’ or limited at large k by the Brunt-Väisäla increment
sBV5Agd lnr0 /dy. Here 0 indicates an equilibrium distribu
tion. We have put the maximum value of the derivative
d lnr0 /dy. In the compressible case we have

sBV
2 5

g

gS 2d lns0

dy D5gS g

c0
2

1
d lnr0

dy D
52gb@¹T2~¹T!AD#,

b52S ] lnr

]T D
P

, ~¹T!AD52
bgT

cP
,

g5
cP

cV
5

nF12

nF
, mcP5

g

g21
,

wheres0 is a distribution of entropy,g is an adiabatic expo
nent,cP andcV are heat capacities at constant pressure
volume, respectively,nF is the number of degrees of free
dom of a molecule,b is the coefficient of heat expansion
and (¹T)AD is the adiabatic gradient. For an ideal g
p5rT/m we haveb51/T, wherem is the molecular weight.
In astrophysical applications the frequencyA2sBV

2 is usu-
ally denoted by the symbolN. Local values of functionssBV
or vBV are used in well-known WKB asymptotics.

This ‘‘cutting’’ of an increment atk→` by the smooth-
ing of the step leads to a delay;1/sBV in a turbulent mixing
of the smoothed profile in comparison with mixing of th
step. This has been clearly demonstrated recently by num
cal simulation@13#. For large scalesY, Y(r0)y8/r0@1, and
late timesT, TsBV@1, the smoothing and this delay a
unessential. But at early and intermediate times they ma
very valuable.

It is important that the density at the lower limit is n
very smallr(2`)Þ0. The smoothing is inefficient for the
case shown in Fig. 2~c!. In this case the boundary conditio
at point A becomes isobaric and the isobaric RT mode
pears in the spectrum. We havesBV→` at m→0 for this
particular case. If the distributionr(y) near the lower bound
ary with the homogeneous region may be fitted by the po
law ~index PL! function

FIG. 2. The inefficiency of the usual profiling and smoothing
the important case of the ablating front when the density stron
decreases. They axis is directed opposite the acceleration of gra
ity.
is

s

d

ri-

be

-

r

r~y!5mrUS y2yPL

e D N
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r~y!5mrU , y,yPL1e,

then the maximum value of the local increment
sBV5AgN/e, e/d.m1/N, where d is the thickness of the
smoothed layer. In the case ofm.1 the maximal incremen
sBV is Ad/e times smaller.

The situation for very smallm is interesting for fusion
applications, since the boundary condition at the ablat
front in the case of dangerous long-wavelength perturbati
k5kA,a2g/4b2vA

25(a2/4b2)MA
22/h, h5c2/g may be ap-

proximated by the isobaric boundary condition; herevA is a
velocity of the ablating front in a cold plasma, andc is the
velocity of sound in this plasma. This means that the inc
ment of these perturbations is approximately the same as
classical one. The estimate ofkA follows from the well-
known @14# Takabe formula sA5aAgk2bkvA , with
a'0.9,b'3; Mach numberMA5vA /c of the front is small:
MA!1. A similar estimate also follows from an expressio
for sA given in Ref.@15#.

It should also be mentioned that the dynamics of an in
nal region remote from the ablating front is important ind
pendently of the situation at the front. For example, su
remote instabilities have been studied recently in exp
ments@16#.

It seems necessary to expand Cowling classification u
in astrophysics@17,18#. These arep, g6, andf modes. There
are pressure or sonic waves (p modes!, stable gravity
(g1,v2.0), and unstable (g2,v2,0) modes, and one fun
damental f mode. A naturally expanded classification i
cludes

p, g1, g2, f 1, f 2

modes.@Below in Sec. VI it will be shown that, in addition to
the f 6 gravity modes, acoustic modes that are invariant~fun-
damental means invariant! to a stratified profile exist.# The
mode f is now anf 1 mode. Isobaric properties of this clas
sical mode are well known~see works by Gerstner an
Rankin cited in Ref.@11#!. The isobaric RT mode will be
called the fundamentalf 2 mode.

We do not propose to eliminate thef 2 mode from the
spectrum by the profile shown in Fig. 1. This is impossib
Instead, we intend to remove it far from the important inte
nal region at the expense of the large thicknesses of the o
subshells. There are low-density subshells. Therefore
gradientu¹pu is small in this outer region and the ablativ
pressurepA effectively accelerates the dense internal su
shells.

The important region is the region near the intern
boundaryr V or yV50. The large-density subshells are he
They are most important for the compression process.
reason for the space separation of thef 2 andg2 modes is as
follows. In the proposed optimal profiles the gradientu¹ru
rises when we approach ther V boundary. Theg2 modes are
in the region of maximum gradients. They are in the lay
with thickness;1/k near ther V boundary, as shown in Fig
3. The f 2 mode decays exponentially at the length 1/k in the
direction away from the ablating front. The decay of theg2

ly
-
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3354 57N. A. INOGAMOV
and f 2 modes is shown in Fig. 3~a!. Therefore, two different
separated regions of instability and mixing appear near
boundariesr V and r A ~or yV50 andyA); see Fig. 3. In Fig.
3~b! isodensity contours are shown.

The instability caused by thef 2 mode cannot be changed
The increment of this mode is fixed and we cannot reduc
The increment in the case of theg2 mode depends on th
stratification of the profile, and may be reduced.

The optimal profiles are self-similar polytropes describ
by power-law functions. For example, the density profile
r}(2y)N, with N the polytropic index. The self-similarity
condition means that dimensional parameters are abs
Therefore the spectral theory is scale invariant. The exp
sion for the increment issm5ASmgk, whereSm are dimen-
sionless functions, and the indexm denotes the denumerab
set $m% of discrete eigenvalues. In the qualitative sense
expression fors is the same as in the simple case of t
jump in an incompressible fluid. In the unstable case
mode with the largest increment is interesting. Usually
corresponds to the ‘‘ground’’ state withm50.

We also mention that the dependence ofS0 (S05s0
2/gk)

on the variable parameterN may be used for the optimiza
tion. The increase ofN improves the one-dimensional pe
formance of targets. It decreases the value of energy ne
sary for the ignition. But, on the other hand, this leads to
intensification of instability. Therefore, some intermedia
value must exist that corresponds to a reduced threshol
the ignition. This may be valuable when this threshold is
achieved. It also seems attractive because only impro
ments in target design are used instead of an expensive
plification of laser energetics.

The polytropes studied here have negative indexN.
Thereforer→` asy→0. In the usual polytropes studied i
connection with geophysical and astrophysical applicati
@19–22#, we haveN.0 andr→0 asy→0. The comparison
of these cases is shown in Fig. 4. In both cases there is a
pressure region aty.0. The acceleration of gravity is di
rected down in Figs. 4~a! and 4~b!.

I. MAIN EQUATIONS

A system of equations following from mass, impulse, a
energy conservation laws is

FIG. 3. The separation of the unstable region connected with
f 2 mode and the appearance of two unstable regions and two
ing zones connected with thef 2 andg2 modes, respectively, in the
case of the proposed multilayer target.
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r t1div~rv !50, rv t1~v¹!v1¹p2rgW 50,

st1~v¹!s50, s5s~p,r!,

where s(p,r) is an arbitrary EOS ands is entropy. The
energy equation is rewritten in the formDtp5c2Dtr, where
Dt5] t1(v¹), c25(]p/]r)S . The system is linearized in
the usual way,}est1 ikx, near the hydrostatic equilibrium
@r0(y), c0(y), dp0(y)/dy52gr0(y)]. An equation that
links Lagrangian (pL) and Eulerian (pE) perturbations of
pressure is added to the system. The final system is

r1
kr08v

s
5

pL

c0
2

,
r0u

ik
5

pE

2s
, v5

kpE81gr

2sr0
,

pE2pL

r0
5

gv
s

,
2pL

r0c0
2

5
iku1kv8

s
.

Here the prime means differentiation onh5ky.
Perturbations ofr and u are included algebraically, an

perturbations ofpL andpE are equivalent. After an algebrai
elimination of unknown functionsr, u, andpE , we obtain a
system of two equations forpL andv. It is equivalent to the
full linear system. This system is

vh81
v

S2
52S 11

s2

k2c2D k

sr
pL ,

vh8

S2
1v52

k

srF ~pL!h81
g

kc2
pLG , ~1.1!

whereS25s2/gk. We will omit the index 0 for unperturbed
functionsc andr, since the perturbations of these functio
will not be used. If we excludev from the system of equa
tions ~1.1!, then we obtain the equation

~pL!hh9 2
~r!h8

r
~pL!h82F12

rh8

S2r
1S S22

1

S2D g

kc2GpL50.

~1.2!

e
ix-

FIG. 4. The comparison of the inverse~a! and usual astrogeo
physical ~b! polytropes. Both have a boundary with vacuu
p(0)50. The distributions of pressurep(y) are shown by dot-
dashed curves. The acceleration of gravity is in the direction op
site to they axis in both cases.



n

ge

It
g

b

.

io

ix-

ar

ion

t is
are
.
the

f
-

e

he
g
of

-

um

t

57 3355REDUCTION OF INCREMENT OF RAYLEIGH-TAYLOR . . .
A similar equation usually written for an unknown functio
x5divv is well known @19,20#. If we excludepL , then we
obtain an equation forv. It is

vhh9 1F rh8

r
2

s2

D

~c2!h8

c2 Gvh82F12
rh8

S2r
1

gk

D

~c2!h8

c2

1S S22
1

S2D g

kc2Gv

50, ~1.3!

where D52s22k2c2. Equations~1.2! and ~1.3! are valid
for an arbitrary equation of state.

In the incompressible case the velocity of sound is lar
and Eqs.~1.1! are

vh81
v

S2
52

k

s

pL

r0
,

vh8

S2
1v52

k

s

~pL!h8

r0
. ~1.4!

Equations~1.2! and ~1.3! in this case are

L2pL50, L1v50,

L65
d2

dh2
6

1

r~h!

dr~h!

dh

d

dh
211S22

1

r~h!

dr~h!

dh
.

~1.5!

The equationL1v50 is a classical Rayleigh equation.
describes the dynamics of perturbations in an inhomo
neous incompressible fluid.

If the determinant of the system of equations~1.1!,
det5S2421, does not equal zero, then the system may
resolved forv and v8. The equation, which definesv, if
functionspL(h) and (pL)h8 are known, is

v5
k

s
~S22S22!21

2~pL!h8S21pL

r
. ~1.6!

The velocity of sound drops out of Eq.~1.6!; therefore, it is
the same in the compressible and incompressible cases

II. THE WAY TO REDUCE THE INSTABILITY

Consider the polytropic distribution

r}~2y!N, p}~2y!N11, c5S gg~2y!

N11 D 1/2

,

s}~2y!u, u512N~g21!. ~2.1!

The hydrostatic functions~2.1! are substituted into Eq.~1.2!.
After that we obtain

h~pL!hh9 2N~pL!h82~h22a2N!pL50, ~2.2!

a52
1

2S N2
N11

g
S21

u

gS2D . ~2.3!

The substitutionpL5ehu, h52z/2 transforms Eq.~2.2!
into an equation for the confluent hypergeometric funct
,

e-

e

n

zuzz1(2N2z)uz2au50 @23#, and the changepL5hN/2c,
h5z/(2a1N) transforms Eq. ~2.2! to the steady-state
Schrödinger equationczz2(2E1U)c50 for a particle in
the Coulomb potential with an orbital momentuml 5N/2, an
energy E52(2a1N)22, and potential U521/z
1 l ( l 11)/z2.

We will consider the case when the upper and lower m
ing zones are separated in space; see Fig. 3~a!. Then, to
describe theg2 perturbations located in the upper zone ne
the surfaceyV50 the vanishing asy→2` solution of Eq.
~2.2! will be necessary. It is expressed through the funct
U defined in Ref.@23#:

pL5ehU~a,2N,22h!, ~2.4!

M ~a,b,z!5(
j 50

`
aj

bj

zj

j !
, aj5a~a11!•••~a1 j 21!,

a051,

U52
p

sinNpF M ~a,2N,22h!

G~a1N11!G~2N!

2~22h!N11
M ~a1N11,N12,22h!

G~a!G~N12! G . ~2.5!

We now consider the condition at the upper boundary. If i
the isobaric boundary, then its velocity and displacement
not zero and the functionpL equals zero on the boundary
Consider the simpler case first. In this case, we neglect
pressure inside the internal cavityp0(yV)50 andyV50. The
index N must be bound,N.21, for the convergence o
mass*r dy asuyu→0. We eliminate the first term in expres
sion ~2.5! for U to satisfy the conditionpL(0)50. It is nec-
essary to hit into one of the poleszm52m, m50,1,2, . . . of
the functionG(z) which is a part of the denominator of th
first fraction. Therefore, we haveam1N1152m. It is easy
to obtain the dispersion relation from this condition and t
definition ofa in Eq. ~2.3!. We omit branches correspondin
to p and f 1 modes. Theg1 modes are absent. The fastest
the g2 modes has m50. Its increment is
S0

25Ab21u/(N11)2b, b5g(N12)/2(N11).
In the incompressible case, asg→`, this expression is

simpler. The increment is (S0
2)rigid52N/(N12). The com-

pressibility increases the incrementD(N,g)5S0
2

2(S0
2)rigid.0. The functionD(N,g) increases monotoni

cally if we fix the indexN and decreaseg. The decrease ofg
means an increase in the compressibility. The maxim
valueD(N,1) is achieved atg51. The relative significance
of the compressibility depends onN. When the indexN de-
creases, then the gap

D~N,1!5~S0
2!soft2~S0

2!rigid

5
N12

2~N11!F S 114
N11

~N12!2D 1/2

21G1
N

N12

~2.6!

between soft (g51) and rigid (g5`) cases decreases. A
N521 the gap equals zero. The increments decreases
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3356 57N. A. INOGAMOV
whenN rises at any fixed value ofg. It has a maximum at
N521. The maximal increment equalsAgk, as in the case
of the f 2 mode.

This is shown in Fig. 5. The expansion ofS0
2 in the maxi-

mum is

S0
25122dN1~214/g!~dN!21O@~dN!3#,

wheredN5N11. We see that the linear term indN is in-
dependent ofg. Therefore the expressionD(N,1) begins
with the (dN)2 term. The regionN,0, S2.0 is the square
bounded by limits at the upper and left sides. The upper li
is the increments25Agk of the f 2 mode. The left limit is
the conditionN.21. The reduced increments are inside t
gapD(N,1) defined by Eq.~2.6!. The gap is dashed in Fig
5. The curvesr ands that bound the gap correspond to t
rigid and soft cases, respectively. The polytropic increme
are reduced in comparison with the increment of thef 2

mode. The reduction is denoted by symbolR in Fig. 5. The
stabilizing action of the profiling produces this reduction.

III. SHAPE OF EIGENFUNCTIONS

Consider the eigenfields of the problem. From express
~2.4! and the dispersion relationa052N21, the pressure in
the case of theg0

2 mode ispL5(2h)11Neh, h5ky. The
maximum of the functionpL(h) is at hPL

max5212N. The
vertical velocity v is found from thepL and Eq.~1.6!. It
equals

v5~12b21h!eh, 2hV
max512b, b5

11N

S0
2221

.0.

~3.1!

The position of the maximum of the functionv is given in
Eq. ~3.1!. It appears to be located inside the polytrope. T
proof of this is omitted because it is long.

The plots of the functionspL andv are shown in Fig. 6.
The maxima are asymmetric because the decay of the f
tions when we go away from the boundary is slower th
their rise. If N→21, then the pressurepL is a monotonic

FIG. 5. The stabilizing influence of the polytropic profilin
means that the increments are reduced by the shiftR ~whereR is the
reduction! in comparison with the case of the puref 2 mode. The
increments are confined inside the dashed stripD.
it

ts

n

e

c-
n

function. It is necessary to emphasize the boundary beha
of the g2 modes. They decay ase2kuyu as uyu→`. It is also
interesting that the maxima of the perturbations are at so
depth in spite of the fact that the maximum of the gradie
¹r is at the boundary.

The Taylor series for the maximum of velocity (2hV
max)

near the end pointN521 is

2hV
max5 1

2 1~1/221g!~dN!1~dN!2/g1O@~dN!3#.

In the incompressible case we have (2hV
max)511N/2. Con-

sider the positions of the maxima of perturbations of L
grangian pressure (2hPL

max) and velocity (2hV
max). It can be

shown that there is a separation valueNSEP such that, for
21,N,NSEP, the maximum in velocity is beneath th
maximum in pressure~that is, at a larger distance from th
boundary!, and vice versa forNSEP,N,0 ~the pressure
maximum is at a larger distance!.

Consider the behavior of the eigenfunctions near the p
y50. It may be shown that~i! pL→0 asy→0, ~ii ! velocity
v is finite at the boundary,~iii ! the ratiov/c0}1/A2y for
uyu!1, and ~iv! a perturbation of Eulerian pressur
pE5pL1(g/ iv)r0v→` as y→0. The last circumstance i
specific for the inverse density polytropes considered her
differs from the astrogeophysical polytropes, for which de
sity r0→0 as y→0 ~see Fig. 4!, and therefore we have
pE→0 asy→0.

The measure of the nonlinearity of the perturbation is
function a(h)5pL /p0. It defines the relative amplitude o
the perturbations. The amplitudes of the velocityv(0) and
the relative pressurea(0) are proportional (v}a, uyu!1). If
this ratio is small (pL!p0), the perturbations are linear. W
have pL /p0}eh for m50. The maximum of the function
a(h) lies at the vacuum boundaryy50. It is important that
this function remains bounded in the pointy50. From this it
follows that, if a(0)!1, the perturbations are linear ever
where.

This means that the singularities of the functionsv/c0 and
pE at the vacuum boundary are fictitious. Their presen
does not mean that the perturbation of an arbitrary sm
amplitude at a large distance from the boundary will trans
into the nonlinear regime, and that shocks will appear n
the vacuum boundary. Their appearance is due to a shiftdh
in the perturbed boundary. In consequence of this the ph
cal boundary is not at the pointy50. It is moved by the
perturbation to the pointy501dh.

FIG. 6. The typical behavior of the eigenfunctionspL and v.
Velocity v remains finite at the vacuum boundaryy50. The per-
turbations are localized near the boundary.
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57 3357REDUCTION OF INCREMENT OF RAYLEIGH-TAYLOR . . .
In particular, in spite of the fact that formally the Mac
numberv/c0 is large near the boundary, this means that
thin boundary layer is shifted as a whole. In this layer t
local velocity of soundc0 is smaller thanv(0). But accumu-
lation of this velocity is a slow adiabatic process. It take
long time in comparison with the time necessary for sound
pass this layer. This means that the acceleration due to
perturbation is smallu(dh) tt9 u!g. Therefore the gradients o
pressure and the pressures themselves are small,pL!p0.
From this it follows that the perturbation is linear.

IV. CASE OF NONZERO PRESSURE
IN INTERNAL CAVITY

The answer will change if we consider the internal pr
sure. Let the pressure distribution bepL}(2y)N11. The un-
perturbed boundary is at the pointy5yuG52«. The value«
is defined by the pressure in the cavityp« («}p«

1/(N11)).
In the case of the power-law distribution bounded by

pressurep« , the problem loses its self-similarity. Its spe
trum is presented in Fig. 7. Here, line 1 corresponds to
self-similar ~power-law! spectrums05S0(N,g)Agk. The
asymptotic curve 2 corresponds to the Brunt-Va¨isäla incre-
ment sBV5Agus0y8 u/gs0, which is evaluated at the edge o
the profile at the pointy52«. It limits the growth ofs. The
square of the dimensionless ratio isSBV

2 5(u/g)/k«, whereu
has been defined in Eq.~2.1!. The resulting dispersion curv
is curve 3. It tends to the limiting curves 1 and 2 ask→0 and
k→` respectively. The crossover region between these
asymptotes isk;k«51/«.

At this stage of the acceleration of the shell the press
in the cavity is small,p«!pA . Therefore, the shift« is also
small in comparison with the total thickness of the multilay
shell. In this case it is necessary to calculate the correctio
the self-similar increment due to this counterpressure. T
means that the parameterk« is small, k«!1. We find the
first-order correction in the parameterk« to the unperturbed
increments05S0Agk ~the index 0 means that the branc
m50 is considered!.

The general dispersion curve, which is valid at the ar
trary value of the parameterk«, follows from the condition
pL(2k«)50. We use expression~2.4! for the solution

FIG. 7. The ‘‘cutting’’ or limiting of the spectrum in the case o
the ‘‘cut’’ or limited power-law distribution.
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pL(h) and substitute it into this boundary condition. We th
obtain the general relation

~2k«!N11
G~2N!

G~a!
2

G~N12!

G~a1N11!

M ~a,2N,2k«!

M ~a1N11,N12,2k«!

50. ~4.1!

As «→0 the first term in relation~4.1! is eliminated, since
N.21 and the functionsM tend to 1. In this case, studie
in Sec. II, it is necessary to have the argument of theg
function at the polea1N1152m, a5am , m50,1, . . . .
Consider what will change at«Þ0. If k«!1, then the cor-
rection is small and we are near the pole. The asymp
G(z)'@(21)m/m! #/(z1m), m50,1, . . . isvalid in this vi-
cinity. From this we obtain the required expression for t
correction:

am52m2N211Dam ,

Dam5
~21!m

m!

G~2N!

G~2m2N21!G~N12!
~2k«!N11.

~4.2!

It is interesting to note that the functionam(k) is the same
for the sonic (p) and gravity (g6) modes. From this it fol-
lows that their eigenfunctionspL coincide at any value of«.
This is so because Eq.~2.4! includes the functionsa, which
are the same, and does not include the frequencies, whic
course differ. All other functions (v, r, and so on! of the p
and g6 modes differ because their definitions include fr
quencies.

We next analyze the obtained expressions. The func
G(x) at the real values ofx,1 alternates unit positive an
negative intervals. From this it follows that at any value
N.21 the correctionsDam , Eq. ~4.2!, are negative. If we
substitute Eq.~4.2! into relation~2.3!, which links a ands,
we obtain the biquadratic equation fors. The negative root
for this equation gives frequencies (s252v2) of the sonic
waves. The positive root gives increments of the grav
modes. It follows from consideration of these roots that, d
to the counterpressurep« , the p modes become harder an
stable and the unstableg modes become softer. Therefor
curve 3 in Fig. 7 bends down from line 1 ask increases.

V. CASE OF RIGID BOUNDARY

We analyze another interesting modification by consid
ing the change in the upper boundary condition. Consider
condition that is inverse to the free boundary condition. L
there be a rigid wall at the pointy52«.

The solutionpL(h) of Eq. ~2.1! that satisfies the lowe
boundary condition is given by Eq.~2.4!. To find the spec-
trum it is necessary to satisfy the condition at the wa
v(2k«)50. This condition, together with Eq.~1.6!, gives
the dispersion relation@(pL)h8S22pL#u(2k«)50. Here substi-
tute Eqs.~2.4! and ~2.5! and differentiate. We obtain
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2
12S22

2

M ~a,2N,2k«!

G~a1N11!G~2N!
1~2k«!N11

12S22

2

M ~a1N11,N12,2k«!

G~a!G~N12!
2

a

N

M ~a11,2N11,2k«!

G~a1N11!G~2N!
2~N11!

3~2k«!N
M ~a1N11,N12,2k«!

G~a!G~N12!
2~2k«!N11

a1N11

N12

M ~a1N12,N13,2k«!

G~a!G~N12!
50. ~5.1!
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Consider long wavelengthsk«!1 first. If N.0, then to
zero order ink« the answer is the same as obtained abo
The spectrum is given by relationam1N1152m. The
first-order correction ink« is

Dam5
~21!m

m! S 2
12Sm

22

2
1

N111m

N D 21

3
~N11!G~2N!

G~2N212m!G~N12!
~2k«!N.

We see that the degree of the parameterk« has changed
compared with Eq.~4.2!.

If 21,N,0, then the answer changes at the zeroth or
in comparison with the case of the isobaric boundary
scribed in Sec. II. In this case, it is necessary to eliminate
large fourth term in Eq.~5.1!. To eliminate the term it is
necessary to be at the pole of another gamma functionG(a).
From this we obtainam52m, m50,1, . . . . TodefineS we
have to substitute formula~2.3! for a in this equation. The
solution of the equation isSm

2 52b1Ab21u/(N11),
whereb5(g/2)(2m2N)/(N11). It is necessary to find the
largest increments. Therefore we have to consider first
values of the indexm.

At m50 the expression under the root is the exact squ
From this it follows that the answer in the case ofm is
S2[1 at any values of the indicesN (21,N,0) andg.
This is the indication to consider the caseS251 more care-
fully. It follows from the fact that in this case the syste
~1.1! degenerates and Eq.~1.6! becomes indeterminate be
cause it includes the ratio 0/0. This consideration is inter
ing and results in some significant general conclusions
will be better described in Sec. VI. Here we note that
dispersion relations0

25gk ~the zero means thatm50) co-
incides with the relation for the isobaricf 2 mode. At the
same time the corresponding distribution (pL)0 is noniso-
baric. In addition, if thef 2 mode is a gravity mode then th
mode discussed here is an acoustic one.

It follows from this study that the casem50 must be
omitted because of the violation of the boundary conditio
imposed above. Therefore, for the rigid wall we have to c
sider the next value ofm, which ism51. The corresponding
function SR

2(N,g)52b1Ab21u/(N11), where
b5(g/2)(22N)/(N11) is significantly smaller than 1 an
smaller than the functionSF

2(N,g) for the case of the iso
baric boundary and the indexm50. ~The functionSF has
been shown in Figs. 5 and 7; here we use the indicesR and
F for the separation of the rigid and soft cases!. This must be
so since the rigid boundary stabilizes the motion.

As g→` we have (SR)m5(2N)/(2m2N).0, N,0.
The wave functions of the statem51 are
e.

er
-
e

e

e.

t-
at
e

s
-

~pL!15S 122
h

NDeh,

v15~2h!2NF ~S2221!S 122
h

ND1
2

NGeh.

These expressions follow from Eqs.~2.4! and~2.5!, a1521,
and Eq.~1.6!. The function (pL)1(h) has one zero in the
regionh,0 and it is finite at the rigid boundary. The func
tion v1(h) does not have zeroes inside the regionh,0. For
the factor (2h)2N, N,0 goes to zero at the boundaryy50.

Above we have discussed the asymptoticsk«!1. At the
intermediate scalesk;1/« the incrementSR(k) transfers to
the Brunt-Väisäla asymptote. Therefore the small-scale a
ymptotes~curve 2 in Fig. 7! for the incrementsSR(k) and
SF(k) are the same.

VI. INVARIANT POINT AT ACOUSTIC BRANCH

Consider the limit dispersion relations256gk and the
f 6 modes invariant to the structure of the profile. The sp
tral problem with the perturbations in an incompressible flu
has the property of hidden symmetry. It is known to ha
isospectral deformationr0(y)→I $r0(y)%5 r̃ 0(y), which
keeps the spectrum of eigenvalues unchanged. In contra
the eigenvalues, the same deformation transforms the ei
functions in a nontrivial manner. It is interesting to apply t
transformationI to the invariantf 6 modes since they are no
connected, as all other modes, with any definite profile. I
found that the transformation of thef 6 modes generate
modes of the new type. They are also invariant to the str
fied profile. The solution withm50, which has been ob
tained in Sec. V, belongs to this type. In addition, the n
fundamental modes are acoustic modes, whereas the iso
modes are gravity modes. Therefore, below we use the n
tion f G

6 for the isobaric modes andf P
6 for the new invariant

acoustic modes.

A. Isospectral inversion of density

The inversion of density

r~h!→ r̃ ~h!5
1

r~2h!
~6.1!

does not change the eigenvalues. This transformation is n
trivial. It qualitatively changes the profile given by one fun
tion r(h) to another. Existence of this interesting prope
has been proven firstly for the particular case of three a
trary sublayers between two homogeneous half-spaces@12#.
It has been proven rigorously for the case of an arbitr
number of sublayers in Ref.@24#, and for an arbitrary profile
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in Ref. @25#. Here we present a very short proof. Its adva
tage is that it gives the relationship of the duality betwe
conjugate physical functions of Lagrangian pressurepL and
vertical velocityv. This allows us to apply the inversion t
the isobaric modesI $ f G

6%.
Inversion~6.1! is isospectral in incompressible fluid. W

can extend the results concerning the fundamental mode
the compressible case, since these modes are invariant t
equations of state. To prove isospectrality, we write
equation forpL @Eq. ~1.5!#,

F d2

dh2
2

1

r~h!

dr~h!

dh

d

dh
212V22

1

r~h!

dr~h!

dh GpL~h!50,

~6.2!

and add the boundary conditions at infinitypL(6`)50.
We write the equation forv @Eq. ~1.5!# in the case of the

transformed profile

F d2

dh2
1

1

r̃ ~h!

d r̃ ~h!

dh

d

dh
212V22

1

r̃ ~h!

d r̃ ~h!

dh G ṽ ~h!

50, ~6.3!

and add to it the same boundary conditions.
We then calculate the ratior̃ h8 (h)/ r̃ (h) according to rule

~6.1!, and obtain

r̃ h8 ~h!

r̃ ~h!
5

1

r~2h!

dr~2h!

d~2h!
. ~6.4!

Substituting Eq.~6.4! into Eq. ~6.3!, we obtain

F d2

d~2h!2
1

1

r~2h!

dr~2h!

d~2h!

d

d~2h!
21

2V22
1

r~2h!

dr~2h!

d~2h! G ṽ ~h!50. ~6.5a!

Defining h52j in Eq. ~6.5a!, we obtain

F d2

dj2
1

1

r~j!

dr~j!

d~j!

d

d~j!
212V22

1

r~j!

dr~j!

d~j! G ṽ ~2j!50.

~6.5b!

We now compare Eqs.~6.2! and ~6.5b!. Let the functions
pL(h) and f (j)5 ṽ (2j) be solutions of Eqs.~6.2! and
~6.5b! with boundary conditions imposed above at the sa
eigenvalues. We see that the inversion transforms the ei
function in the following way:

ṽ ~2h!5pL~h!. ~6.6a!

p̃L~2h!5v~h!. ~6.6b!

We see that there are exchanges of thev and pL functions
and changes in the sign of the argument.

In the case of thef G
6 modes the pressure perturbations a

absentpL(h)[0. Velocities may be found from the first o
-
n

to
the
e

e
n-

e

second of equations of system~1.1! for pL(h)[0. They are
v65e6h. Substituting them into the transformation ru
~6.6b!, we find that

~pL!6~h!5e7h, v256gk. ~6.7!

Here and below the upper and lower signs correspond to
upper and lower signs in the dispersion relation as it is w
ten in Eq.~6.7!. Solutions~6.7! correspond to thef P

6 modes.
The same solutions may be found from Eq.~1.2! if we sub-
stitute in it the relationsv256gk. From this substitution it
is easy to see that the functions that define the profile d
out. It appears from this that the distributionspL , Eq. ~6.7!,
are invariant to the profile structure.

B. Behavior of velocity and boundary conditions

We define thev6(h) functions of the f P
6 modes. We

cannot find them from rule~6.6!, so we must return to the
system~1.1!. At v256gk, substituting the distributionspL ,
Eq. ~6.7!, into Eq. ~1.1!, we obtain

~v6!h87v65S 17
g

kc2D e7h

r
. ~6.8!

The functionsv6(h) are found from these equations.
The general solution of Eq.~6.8! depends on two con

stantsCP and CG . The first is connected with the functio
pL since (pL)65CPe7h. The second is connected with th
first order differential equation~6.8!. The general solution of
the homogeneous part of Eq.~6.8!, (v6)h87v650, is
CGe6h. This means that the general solution of Eq.~6.8! is a
mixture of the f P

6 and f G
6 modes, which are taken with th

weightsCP andCG , respectively.
Above we presented the general description of thef P

6

modes. It is interesting to check whether they are compat
with the physical boundary conditions. The isobaric con
tions must be omitted since the functionspL

65e7h do not
have zeros. Therefore, consider the layer bounded by
rigid walls and find the solutions of Eqs.~6.8! with two
zeros.

Consider the case when the right sideR of Eq. ~6.8! does
not change sign. In this case the equation with the lower s
is chosen. Incompressible fluid corresponds to the same c
It can be shown that the solutions are then monotonic fu
tions, and cannot have more than one zero. Therefore,
consider the case of the upper sign. We return to the varia
y, with h5ky, and substitute

v1~y!5ekyw~y!.

After that we obtain

wy85kS 12
g

kc2D e22ky

r
5kR~y!. ~6.9!

We define an arbitrary monotonically increasing or d
creasing functionc(y) on the intervalyD,y,yU , whereyD
and yU are the lower and upper rigid boundaries, resp
tively. It is necessary to consider values ofk such that the
zero of the functionR(y), Eq. ~6.9!, is inside the interval.
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Let R(yz)50 and assume, for definiteness, that the funct
c(y) decreases withy. Then aty,yz we haveR(y).0.
Integrate Eq.~6.9! from the pointy5yD and letw(yD)50.
Then, for velocity we havev(yD)50. The solutionw(y) of
Eq. ~6.9! rises within the intervalyD,y,yz . It achieves the
maximum at the pointy5yz and after that begins to decrea
asy increases.

The variations ofk lead to variations in the positions o
the point yz . If we decreasek, the pointyz moves to the
lower boundaryyD . If the pointyz is sufficiently close to the
lower boundaryyD , the functionw(y) after the maximum
decreases and reaches zero at the pointyzz inside the interval
yz,yzz,yU . It is clear that if we now increasek, the point
yzz will move in the upper direction to the upper bounda
yU . Therefore there is a valuekP such that the coincidenc
yzz5yU takes place. There is a frequencyvP5AgkP that
corresponds to this value ofk. At these values ofk andv the
function v(y) satisfies both boundary conditions and
therefore the eigenmode of the problem. The pointI
(kP ,vP) at thek,v plane corresponds to this mode.

C. Inversion transformation between acoustic
and gravity branches

The gas layer bounded by two walls was considered
Sec. VI B. The corresponding spectrum is presented in
8~a!. There arep andg modes. The indexm of the acoustic
modespm , m50,1, . . . shows the number of zeros of th
function v(y) inside the layer. Ask→0 their frequencies
become constants.c/d, whered5yU2yD is the distance
between the boundaries andc is some average velocity o
sound. Ask→` their frequencies approach the asympto
v5ck.

There is one more acoustic mode in addition to mo
pm , m50,1, . . . . It hasanother asymptote ask→0. It is
marked by labelL in Fig. 8~a!, and is called the Lamb mode
It is easy to understand its appearance if we consider
limit g→0. In this case it is obvious that in the gas lay
there is a mode that propagates strictly horizontal. Consid
rectangular box with rigid walls. The acoustic modes a
classified by a pair of numbers (my ,mx), wheremy andmx
represent the half wavelengths in the box in they and x

FIG. 8. The spectral sets for thep andg denumerable families
of modes.~a! Two rigid boundaries. The pointI belongs to the
invariant~fundamental! f P

1 mode.~b! Two isobaric boundaries. The
pressure at the upper boundary ispV50.
n

n
g.

s

e
r

a
e

directions respectively. There are mod
(0,1),(1,0),(1,1),. . . . The pairs (my ,mx) with numbers
my51,2, . . . correspond to the modesp0 , p1 , . . . , and all
pairs with the numbermy50 correspond to theL mode.

In the homogeneous layer atg50, the velocityv of theL
mode isv(y)[0. In the inhomogeneous case, the functi
v(y) is defined by the inhomogeneity. It does not have ze
inside the profile in the case of the monotonic profile and
has one or more zeros in the case of nonmonotonic profi
The L mode is eliminated if one or two boundaries are is
baric; see, e.g., Fig. 8~b!. It is important that at the fixed
boundary conditions the qualitative structure of the acou
L andpm modes is conserved atgÞ0.

At gÞ0 the gravity modesgm
6 appear. Here,m50,1, . . .

gives the number of zeros of the functionv(y). In the limit
of shallow waterk→0 or the long-wavelength limit their
frequencies are

vm5jmA~d lns/dy!dck5ajmA~d lns/dy!dAghk,

whereh5c2/g, d5yU2yD , the numbersjm ,a depend on
the profile structure, andjm→0 asm→`.

The pointI from the invariant modef P
1 is the intersection

point of the dispersion curve of theL mode and the curve
v5Agk. Its coordinates arekP andvP ~see Sec. VI B!.

The full spectrum of the polytrope bounded by the tw
isobaric boundaries studied here is presented in Fig. 8~b! for
comparison. There arepm , f G

1 , gm
2 , and f G

2 modes. Indexm
gives the number of zeros of functionpL(y). The modesf G

1

and gm
2 are connected with the upper boundaryyV and the

mode f G
2 with the lower boundaryyA .

As stated above, the different eigenfunctions corresp
to the f P

6 and f G
6 modes. The first have the exponential pre

surespL and the second have exponential velocitiesv. We
see that the acoustic and gravity families are symmetric n
with both having their own invariant~fundamental! modes
that separate them.

VII. THERMODYNAMICS OF SUBSHELLS

The work is dedicated to the study of the spectral prop
ties of the inverse density polytropes. The results are used
the simulation of the linear stage of the development of
RT instability in the multilayer targets. Is this approach a
equate to the real situation? The targets consist of a la
number of subshells made from different materials. Is it p
sible to describe the process of the development by one p
trope when~a! the EOS of the materials are nonideal, and~b!
these EOS are different in the different subshells?

We now answer these questions. The targets with
power-law distribution of densityr are fabricated by select
ing the chain of substances of increasing densi
rJ,rJ21,•••,r1 and adjusting the thicknesses of the su
shells. It is assumed that the multilayer target is in the eff
tive gravity field. This is the standard approximation used
many authors. Then the hydrostatic equation is va
py852gr. It appears from this that, if we neglect the pre
sure pV in the cavity, then the pressure profile will be th
power-law profile. The difference between the power-law
dices for the pressure and density distributions equals
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Therefore, the ratiop/r is the linear function of the coordi
nate.
The model is based on the dynamic equation~1.2!, which is
valid at arbitrary EOS. The inertial and thermodynamic co
ditions must be fulfilled to go from Eq.~1.2! to the solutions
presented in Secs. II and III. The inertial conditions~the
power-law profile ofr, the linear dependence ofp/r) are
fulfilled. We now consider the thermodynamic condition.
is the condition for the linear dependence of the functionc2

on the coordinate.
Consider this condition. Write the thermodynamic relati
between the functionsc2 andp/r. From the definitions ofc2

andgR, we have

c25gR

p

r
, c25S ]p

]r D
S

, gR5S ] lnp

] lnr D
S

. ~7.1!

In the case of nonideal EOS, the indexgR in the adiabatic
processes is the function of one thermodynamic varia
e.g., densitygR5gR(r). In different subshells this function
will be different gR

j (r), where the indexj enumerates the
subshells. Here we consider the hydrostatic or steady-s
distributions. In the steady state the densities of the subsh
are fixed asr j . Therefore, the thermodynamic indices d
pend on the index of the subshell onlygR

j (r)5gR
j (r j )5gR

j .
The ratiop/r in Eq. ~7.1! is linear. For applicability of our
approach, the indicesgR

j must therefore be the same in di
ferent subshells.

From numerous studies of EOS it is known that the in
cesgR differ moderately for different substances. The infl
ence of these variations on our results is not significant.
main result is the partial stabilization of the RT instability
shown in Fig. 5. This is the reduction of the increments due
to the shift R. The conclusion about the reduction rema
true if the indicesgR are different in different subshells. Thi
r-

y

L.

y,

.

,

L.
-

e,

te
lls

-

e

means that the inertial conditions are more significant for
dynamics of the instability than the thermodynamic one.

We use a two-layer example to show this. Let the ind
beg5gU at yS,y,0 andg5gD at y,yS . In this case the
increments is defined by the indexgU at large wave num-
berskuySu@1 and by the indexgD at small wave numbers
kuySu!1. The monotonic transformation of the increme
takes place in the crossover regionkuySu;1 as shown in Fig.
9. This is because the small-scale perturbations are locate
the upper sublayer and, on the other hand, this sublaye
unessential for the large-scale perturbations.

It appears from this that the increment remains inside
dashed strip in Fig. 5 for all wavelengths in the problem w
variable indexgR . Therefore, the increment also remai
reduced in this problem.
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